If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+36t-20=0
a = -16; b = 36; c = -20;
Δ = b2-4ac
Δ = 362-4·(-16)·(-20)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4}{2*-16}=\frac{-40}{-32} =1+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4}{2*-16}=\frac{-32}{-32} =1 $
| 3=9k-60 | | g/5=25 | | -12a+1=-5a-25+6 | | (3x+1)(x-3)/x+4=0 | | -27=3/4=w | | (3x+1)(2x^2+4x-3)=0 | | 2(6a-7)+3=4a+13 | | 2(x)-4=12(x)-3 | | 2(62-7)+3=4a+13 | | 5+x/12=24 | | w*10^-2=28.2 | | 6x+10=142 | | 6(v+4)=60 | | 5(x-8)=2(x)-7 | | 3x+5+39+61=180 | | -50=-5(4n+6) | | (x*x*x)=972 | | 3a-9=2a+4 | | 3(2x+3)=5(x-6)+4x | | 19y=195 | | 8(2x+1)=3(5x+1) | | 2x=4(x+10) | | Y/2=5r1 | | -5x-48=72+3x | | 6(x+2)=4(x-4)+4x | | 23+2.5x=7 | | (60+x)=95 | | 1.2/x=3/4 | | 4+8r=156 | | p-5/p=5/3p-1/5 | | x+10=3x-45 | | -3c-12=-6+c |